
1. Introduction
The Indian Ocean Dipole (IOD) is a critical mode of interannual variability in the tropical Indian Ocean, featur-
ing a zonal dipole structure of anomalous sea surface temperature (SST) (Behera et al., 2005; Cai et al., 2011; 
Saji et al., 1999; Webster et al., 1999). In its positive phase, the IOD is characterized by unusually cold SSTs in 
the eastern tropical Indian Ocean and warm SSTs in the west. The opposite SST structure applies to negative 
IOD events. Given its impacts on human and natural systems, considerable effort has been devoted to improv-
ing IOD prediction in the past two decades (Dommenget & Jansen, 2009; Luo et  al., 2007; Shi et  al., 2012; 
Song et al., 2008; Wajsowicz, 2005; Zhao & Hendon, 2009). Skillful IOD prediction can be generally made at 
lead times of around 1–2 seasons with the current generation of climate models (e.g., Liu et al., 2017; Wu & 
Tang, 2019), though some specific events were successfully predicted or hindcasted at longer times (e.g., Luo 
et al., 2007, 2008).

Overall, IOD prediction skill is relatively poor compared to El Niño and Southern Oscillation (ENSO) in the 
Pacific (Wu & Tang, 2019). Similar to the spring persistence and predictability barriers for ENSO, the IOD also 
has a barrier with a rapid degradation of the prediction skill across the boreal winter, which is largely attributed 
to the impact of the monsoons (Feng et  al.,  2014; Wajsowicz,  2005). Nevertheless, IOD prediction at leads 
shorter than two seasons is still unsatisfactory and leaves substantial room for improvement (Doi et al., 2017; Liu 
et al., 2017). The magnitude of the extreme IOD event in the fall of 2019, for instance, was severely underesti-
mated by most real-time forecasts until predicted in August (Doi et al., 2020; Lu & Ren, 2020; Zhang et al., 2021).

Many explanations have been proposed for the relatively low predictability of the IOD (Doi et al., 2017; Liu 
et  al.,  2017). One is the diversity of mechanisms responsible for IOD development (Huang & Shukla,  2007; 
Saji, 2018). Moreover, accurately reproducing all the IOD dynamics is a challenge in current climate models. 
As a large-scale air-sea coupled mode, the IOD can be triggered by interbasin and multi-time scale interactions 
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(Francis et  al.,  2007; Wang et  al.,  2016; Zhang et  al.,  2021). Among them, ENSO is widely accepted as the 
primary remote forcing that modulates the zonal wind and temperature gradient over the tropical Indian Ocean 
through the anomalous variations in the Walker Circulation (Yu & Lau, 2005; Zhang et al., 2015). ENSO-related 
changes to the Indonesian Throughflow can also play a role (England & Huang, 2005). However, several intense 
IOD events, such as in 1961 and 1994, have occurred without substantial ENSO forcing, which highlights the 
potential importance of variability internal to the Indian Ocean (Ashok et al., 2003; Behera et al., 1999; Meyers 
et al., 2007; Saji et al., 1999).

Much effort has been devoted to clarifying the relationship between ENSO and IOD (e.g., Behera et al., 2006; Song 
et al., 2008; Yamagata et al., 2004; Yang et al., 2015). While ENSO forcing is very important, ENSO-independent 
internal variability contributes around two-thirds of the total IOD variance (Yamagata et  al.,  2004; Yang 
et al., 2015). Nonetheless, in practice, the prediction of the IOD in non-ENSO years is much poorer than when 
co-occurring with ENSO (Shi et al., 2012; Song et al., 2018; Zhao & Hendon, 2009). If there are potential sources 
of predictability internal to the Indian Ocean for the IOD, they are not well identified and less effectively utilized.

Several precursors relating to internal variability of the Indian Ocean have been proposed for IOD predictability, 
particularly in the absence of ENSO (Francis et al., 2007; Lu & Ren, 2020; Yang et al., 2015). One is a zonally 
coherent variation in the upper-ocean equatorial heat content (EQHC) prior to some IOD events (Doi et al., 2017; 
Horii et  al.,  2008; Murtugudde et  al.,  2000; Rao et  al.,  2002), suggesting that IOD can be interpreted in the 
framework of oceanic heat content recharge-discharge (McPhaden & Nagura, 2014; Wang et al., 2016) analogous 
to the theory proposed for ENSO (Jin, 1997). In this framework, as a positive IOD event develops from boreal 
summer to winter, a reversed zonal thermocline tilt will drive heat to converge on the equator from off-equatorial 
latitudes (i.e., the recharge process). Meanwhile, wind stress curl south of the equator forces westward propagat-
ing downwelling Rossby waves, which reflect into downwelling equatorial Kelvin waves at the western boundary 
leading to further heat accumulation along the equator in the following spring. As a consequence, the thermocline 
deepens all along the equator, which suppresses upwelling in the eastern pole of the dipole to set the stage for 
the development of a negative IOD event. The same sequence of events, but with opposite signed tendencies, 
describes the transition from a negative to a positive IOD (McPhaden & Nagura, 2014; Rao et al., 2002; Sayantani 
& Gnanaseelan, 2015). One feature of this recharge dynamics is that EQHC variations reflect the time-integrated 
effects of wind forcing on the ocean. In addition, heat content over the southeastern tropical Indian Ocean (SEHC) 
in the eastern pole of the Dipole has also been proposed as an IOD predictor (Yang et al., 2015). However, the 
relative importance of these two proposed heat content predictors requires further investigation.

This study is aimed to address whether and to what degree the Indian Ocean heat content can complement IOD 
predictability based on ENSO by constructing statistical prediction models with and without the heat content 
as predictors. Compared to using general circulation models, statistical models have the advantage of allowing 
us to efficiently target factors and processes that affect IOD predictability (e.g., McPhaden et  al.,  2006; Shi 
et al., 2012). The rest of the paper is organized as follows. Section 2 introduces the data sets and the statistical 
model we use. Examination of heat content as an IOD predictor is presented in Section 3. In Section 4, we demon-
strate how the effectiveness of heat content as a predictor also depends on the season and lead time. We end with 
a summary and discussion in Section 5.

2. Data and Methods
This study is based on monthly-mean outputs from the ECMWF Ocean Reanalysis System 5 (ORAS5, Zuo 
et al., 2019) from January 1960 to December 2021, interpolated into a horizontal resolution of 1° × 1°. ORAS5 
assimilated observations including in-situ ocean temperature, salinity, sea-ice concentration, and satellite altime-
try sea level. As validation, ORAS5 sea surface height (SSH) is highly consistent with the Archiving, Validation, 
and Interpretation of Satellite Oceanographic Data (AVISO, Ducet et al., 2000) in the tropical Indian Ocean (not 
shown). Anomalies are obtained as deviations from the climatological mean seasonal cycle over the entire anal-
ysis period (1960–2021). A 3-month running average is applied to remove high-frequency intraseasonal noise. 
Given that prominent decadal variations occur in the tropical Indian Ocean (Song et  al.,  2018; Ummenhofer 
et al., 2017), a least-squares quadratic trend is removed to concentrate on interannual variability.

SSH is commonly seen as a good proxy for upper-ocean heat content over the tropics (e.g., McPhaden & 
Nagura, 2014; Rao et al., 2002). In ORAS5, the SSH and upper 300-m integrated temperature exhibit highly 
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consistent variations in the Indian Ocean, especially in the equatorial band and southeastern Indian Ocean 
(Figure 1). Thus, an EQHC index is defined as the averaged SSH anomaly in the equatorial Indian Ocean region 
(2°S–2°N, 40°–100°E) marked in Figure 1, following McPhaden and Nagura  (2014). Similarly, the averaged 
SSH anomaly in the southeastern Indian Ocean (10°S–0°, 90°–110°E) is defined as the SEHC index following 
Yang et al. (2015). IOD variability is tracked by the Dipole Mode Index (DMI, Saji et al., 1999), which is defined 
as the SST anomaly difference between a western pole (10°S–10°N, 50°–70°E) and an eastern pole (10°S–0°, 
90°–110°E). ENSO is represented by the Niño3.4 index, namely, the mean SST anomaly in the region 5°S–5°N, 
120°–170°W.

We develop a statistical prediction model for the DMI involving heat content variations in the Indian Ocean in 
addition to ENSO and the DMI itself as predictors:

DMI(𝑡𝑡) = 𝛼𝛼DMI(𝑡𝑡 − 𝜏𝜏) + 𝛽𝛽𝛽𝛽ENSO(𝑡𝑡 − 𝜏𝜏) + 𝛾𝛾𝛽𝛽𝐻𝐻𝐻𝐻 (𝑡𝑡 − 𝜏𝜏) + 𝜉𝜉𝜉 (1)

where α, β, and 𝐴𝐴 𝐴𝐴 are regression coefficients obtained from a multiple linear least square fitting, which vary with 
specific target month t and lead month 𝐴𝐴 𝐴𝐴 , considering the possible seasonal dependence in the IOD dynamics and 
predictability (Luo et al., 2007; Stuecker et al., 2017; Wajsowicz, 2005; Wu & Tang, 2019; Zhao et al., 2019). 
On the right of Equation 1, the first three terms separately represent DMI persistence, the influence of ENSO 
(as given by the Niño3.4 index), and the effect of heat content at different lead times. Noise and other impacts 
are represented in the quantity ξ. We name this model the heat content-included model and use it to hindcast the 
observed historical DMI. If we remove the heat content term, the model reverts to a benchmark model that only 
considers the influence of ENSO and DMI persistence. We can evaluate the additional predictive value of EQHC 
and SEHC by directly comparing the hindcast skill of the model including heat content relative to the benchmark 
model. Hindcasts are performed in terms of cross-validation, where regression coefficients in the model for each 
target month are calculated with only data in the months not used for training.

Hindcast skill is evaluated using the anomaly correlation coefficient (ACC) and root mean square error (RMSE). 
The statistical significance for ACC is determined from a two-tailed Student's t-test and for ACC differences 
from a Steiger's z-test (Meng et al., 1992). Tests are conducted taking into account effective degrees of freedom 
(Thomson & Emery, 2014).

3. IOD Predictability From the Heat Content Internal to the Indian Ocean
The long-term evolution of the DMI, Niño3.4, and heat content indices are shown in Figure 2. It can be seen 
that many historical IOD events are accompanied by strong ENSO signals in the Pacific. However, some IOD 
events, such as strong IODs in 1961 and 1994, occurred in the absence of substantial ENSO. These events are 

Figure 1. Anomaly correlation coefficients between the ORAS5 reanalysis sea surface height and oceanic heat content 
measured by depth-integrated temperature in the upper 300-m. The blue boxes define the Dipole Mode Index (DMI) regions 
described in the text, and the green box is for the equatorial heat content index. The southeastern tropical Indian Ocean heat 
content index region corresponds with the eastern pole of the DMI.
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associated with a noticeable heat content reduction, consistent with previous studies highlighting the potential 
role of internal ocean preconditioning (Horii et al., 2008; Murtugudde et al., 2000). Correlation analysis shows 
that DMI in the second half of the calendar year is positively correlated with the Niño3.4 index at lead times 
of around 1–6 months (Figure 3a). During the target months of September-October-November (SON), when 
the DMI generally peaks, the correlation is above 0.5 at lead times of up to a 5-month. Such a high correlation 
suggests that ENSO is a key remote forcing for IOD development (e.g., Yu & Lau, 2005). However, ENSO intrin-
sically has a persistence barrier occurring during late spring and early summer (Figure 3b), making itself less 
predictable across that season (e.g., McPhaden, 2003; Ren et al., 2019). This feature also reduces IOD predicta-
bility based on ENSO for initial times earlier than the boreal spring.

The SEHC index at lead times of around 1–6  months is significantly negatively correlated with DMI in the 
second half of the year (Figure 3c). Auto-correlations of SEHC show a barrier in late spring and early summer 
(Figure 3d), similar to the Niño3.4 index, which may be attributed to the strong modulation of ENSO on the 
surface and subsurface of the SEHC (e.g., Yu & Lau, 2005). In contrast, the correlation of the EQHC index with 
DMI is not as strong as that of the SEHC index with DMI, but it remains significant at longer lead times. For a 
target season of SON, the EQHC index is still well correlated with DMI at up to a 9-month lead time (Figure 3e). 
EQHC itself has a relatively long persistence (Figure 3f) as its variation is mainly the result of low frequency 
large-scale oceanic adjustment to wind forcing. This suggests that EQHC may be a useful predictor at relatively 
long lead times, especially during those times overlapping with the Niño3.4 and SEHC persistence barriers. We 
will further explore this hypothesis through constructing and verifying statistical prediction models of the IOD.

Figure 4 presents the hindcast skill for all months combined during the analysis period at different lead months. 
The benchmark model considering only ENSO and IOD persistence as predictors exhibits significant ACC skill 
scores at relatively short lead times of up to 5 months, significantly distinct from the persistence at the 90% 
confidence level for lead times in the range of 2–4 months (Figure 4a). When adding EQHC to models as a 
predictor, the hindcasts show a conspicuous improvement relative to the benchmark model (Figure 4b), with ACC 

Figure 2. Time series of 3-month running averaged Dipole Mode Index (gray bar), equatorial heat content (EQHC) (red 
curve), southeastern tropical Indian Ocean heat content (SEHC) (green curve), and Niño3.4 indices (blue curve) from January 
1960 to December 2021. All indices have been normalized by their standard deviations. EQHC and SEHC are represented in 
terms of their equivalent sea surface height signatures.
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skill scores reaching above 0.5 at a 4-month lead time and remaining significant up to a lead time of 7 months 
(Figure 4a). This is comparable to some operational dynamical model predictions (e.g., Liu et al., 2017; Song 
et al., 2018; Wu & Tang, 2019). The skill enhancement for the EQHC-included hindcast over the benchmark is 
quite distinctive, with a maximum of 0.17 at a 7-month lead (Figure 4b), suggesting that the addition of EQHC 
predictor can effectively complement IOD predictability, especially at relatively long lead times. In contrast, 
the hindcast skill of the model including SEHC as a heat content predictor is nearly the same as the benchmark 
(Figures 4a and 4b), which implies the heat content variation in the SEHC provides limited IOD predictability 
beyond that provided by ENSO and IOD persistence. These conclusions are also supported by RMSE skill scores, 

Figure 3. Cross-correlations between Dipole Mode Index and (a) Niño3.4, (c) southeastern tropical Indian Ocean heat 
content (SEHC), and (e) equatorial heat content (EQHC) as a function of different target months and lead times. The solid 
black contours indicate statistically significant correlations at the 90% confidence level and the dashed black contours indicate 
the specific correlation of 0.5. (b, d, f) Similar to (a, c, e), but for auto-correlations of (b) Niño3.4, (d) SEHC and (f) EQHC.
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for which EQHC-included hindcasts are superior to others at up to a 9-month lead time, while SEHC-included 
hindcasts are nearly the same as the benchmark (Figures 4c and 4d).

Given that ENSO forcing is partly responsible for variations in Indian Ocean heat content, SEHC also shows a 
tight relationship with ENSO, as the simultaneous correlation of the SEHC index with Niño3.4 index reaches 
−0.47. In contrast, the EQHC index is basically independent of the simultaneous Niño3.4 index but slightly 
correlated with it at an 8-month lag (with a correlation coefficient of 0.33). In this case, the improvement after 
adding the heat content predictor may also partly be due to remote ENSO impacts as 𝐴𝐴 𝐴𝐴ENSO and 𝐴𝐴𝐻𝐻𝐻𝐻 on the right of 
Equation 1 are cross-correlated. Thus, we further use a simple linear fit to determine the ENSO-associated heat 
content variation as 𝐴𝐴

∑9

𝜏𝜏=0
(𝜃𝜃(𝜏𝜏) ⋅ Nino3.4(𝑡𝑡 − 𝜏𝜏)) , that is, a multi-variate regression of heat content on the Niño3.4 

indices with lead times up to 9 months. Here, 𝐴𝐴 𝐴𝐴 denotes the lead time in months, and 𝐴𝐴 𝐴𝐴(𝜏𝜏) is the corresponding 
regression coefficient. We again examine the effect of heat content variations internal to the Indian Ocean after 
removing heat content variations linearly related to ENSO. It is clear that the correlation of SEHC with DMI 
sharply decreases without the ENSO-associated part (Figure 5a). However, the relationship between EQHC vari-
ations and IOD activity is less affected, still showing a significant correlation at long lead times (Figure 5b). 
We next repeat the hindcasts after removing ENSO-associated heat content variations and find that the skill of 
EQHC-included hindcasts weakens but does not qualitatively change (Figure 6). This result confirms the value of 
EQHC providing IOD predictability derived from dynamics internal to the Indian Ocean.

Our statistical framework also includes an IOD persistence term, whose influence on the heat content predictor 
can be measured through a similar linear regression fit 𝐴𝐴

∑9

𝜏𝜏=0
(𝜇𝜇(𝜏𝜏) ⋅ DMI(𝑡𝑡 − 𝜏𝜏)) . The SEHC index becomes inde-

pendent of DMI after removing the persistence-associated variation (Figure 5c). This result implies that persis-
tence essentially accounts for the IOD predictability provided by SEHC, given that the surface and subsurface 
over the SEHC are highly coupled during the IOD development (Huang & Shukla, 2007; Liu et al., 2011). This 
result also explains why Yang et al. (2015) found that SEHC complements IOD predictability in combination 
with ENSO when IOD persistence is not taken into account. However, persistence impacts the correlation of DMI 

Figure 4. (a) Cross-validated anomaly correlation coefficient (ACC) skill scores for the benchmark hindcast (blue), 
equatorial heat content-included hindcast (red), southeastern tropical Indian Ocean heat content-included hindcast (green), and 
persistence (orange) for all months from 1961 to 2021. (b) Skill differences relative to the benchmark model. Circles indicate 
significance of the ACCs or ACC differences at the 90% confidence level. (c, d) Similar to (a, b), but for RMSE (in °C).
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with EQHC less (Figure 5d) compared to the correlation of DMI with SEHC, perhaps because EQHC results 
from the time integral of wind forcing in the equatorial band. Therefore, we conclude that EQHC is a more useful 
IOD predictor than SEHC when the model forecast framework takes IOD persistence into account.

4. Seasonal Variation in Heat Content as a Predictor
Previous studies have revealed that IOD predictability has a pronounced seasonality (e.g., Luo et  al.,  2007; 
Wajsowicz, 2005; Wu & Tang, 2019; Yang et al., 2015). Thus, here we examine the dependence of hindcast skill 
on target calendar months (Figures 7a–7c). The benchmark and heat content included models all reach minimum 
skill for the target months of April–July, reflecting a clear predictability barrier. For the target months during 
the second half of the year, all models improve and achieve their best skill in October–December. Hindcasts of 
the EQHC-included model are superior to the benchmark, especially at long lead times for targets in the second 
half of the year (Figure 7d). For the target month of October, the ACC skill scores for EQHC-included hindcasts 
are significant at 90% confidence level for lead times up to 9 months (Figure 7b), 3 months longer relative to the 
benchmark, highlighting the effect of EQHC. The most noticeable improvement when EQHC is included as a 
predictor generally occurs for initial times in the late boreal winter and spring (Figure 7d). During this time, the 
ENSO influence is weak, while the effect of EQHC is relatively strong (Figures 3a and 3c). This also explains 
why EQHC as a predictor is mainly useful at relatively long lead times. In contrast, when SEHC is included as 
a predictor, there is almost no significant improvement in skill relative to the benchmark (Figure 7d), consistent 

Figure 5. Cross-correlations between Dipole Mode Index and (a) southeastern tropical Indian Ocean heat content and (b) 
equatorial heat content as a function of different target months and lead times where El Niño-Southern Oscillation-associated 
heat content variations are removed in advance by linear regression. The solid black contours indicate statistically significant 
correlations at the 90% confidence level, and the dashed black contours indicate the specific correlation of 0.5. (c, d) Similar 
to (a, b), but linearly removing heat content related to Indian Ocean Dipole persistence.
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with the all-month-combined skill (Figure 4a), suggesting again that EQHC is more effective as a predictor than 
SEHC. The seasonality of EQHC effectiveness is also supported by RMSE skill scores (Figure 8), for which 
errors are substantially reduced for the target months of August to November at lead times of around 5–8 months 
(Figure 8d).

We next examine the effectiveness of EQHC as an IOD predictor over the analysis period, using the year-by-year 
EQHC-included hindcasts for the SON DMI at a lead time of 5 months as an example (Figure 9). It can be seen 
that the statistical models can capture the IOD peak in most cases though hindcasts of extreme IODs, such as in 
1994, 1997, and 2019, are significantly underestimated, which might be attributed to the lack of other predict-
ability sources. For example, our model framework does not include the nonlinear effect of state-dependent 
stochastic wind forcing for generating extreme events as occurs in the Pacific (e.g., Levine & Jin, 2017). However, 
the EQHC-included hindcast model performs better than the benchmark overall, with an ACC skill score of 0.64 
versus 0.52. We calculate the hindcast improvement as 𝐴𝐴 |DMIobs − DMIbenchmark| − |DMIobs − DMIEQHC| , that is, 
the difference in absolute values of the hindcast error between the benchmark and EQHC-included models. 
Positive values indicate that the EQHC-included hindcast is closer to the observations (Figure 9b). Conspicuous 
improvements tend to occur when EQHC variations are strong while ENSO is relatively weak. However, in some 
cases (e.g., events in 1982 and 2015), the heat content predictor is less effective, implying other processes must 
be at work. We define years with the DMI amplitude exceeding one standard deviation in SON as IOD years 
(e.g., Rao et al., 2002). Out of 28 IOD years, 21 cases show an improved hindcast relative to the benchmark when 
taking EQHC into account. This analysis emphasizes that heat content variations internal to the Indian Ocean are 
often valuable as an IOD predictor, though there are other processes we have not considered that are likely to be 
important as well (Liu et al., 2011; Lu & Ren, 2020).

The hindcast skill scores for positive and negative IOD years separately are shown in Figures 10a and 10b. The 
EQHC-included hindcasts are improved in both cases compared to the benchmark, especially at 7–8-month lead 
times for positive IOD years. The hindcast skill for positive IODs seems to be higher than for negative IODs, 
which has been mentioned in previous studies, and might be related to the asymmetry of IOD amplitude (e.g., 
Liu et al., 2017). We also define years when the absolute value of SON Niño3.4 index is weaker than 0.5°C 

Figure 6. Same as Figure 4, except when El Niño-Southern Oscillation-associated heat content variations are removed from 
equatorial heat content and southeastern tropical Indian Ocean heat content via linear regression.
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as non-ENSO years and other years as ENSO years, then examine the hindcasts for these two types of years 
(Figures 10c and 10d). For non-ENSO years, the benchmark hindcast is basically the same as the persistence. 
When EQHC is included as a predictor, hindcast is improved with an ACC skill score exceeding 90% signifi-
cance at up to 6-month lead times. However, the improvement is small and statistically insignificant relative to 
the benchmark that does not include heat content as a predictor (Figure 10c). For ENSO years, both the bench-
mark and EQHC-included hindcasts show higher skill than non-ENSO years and the EQHC-included hindcast 
is significantly improved compared to the benchmark at lead times of 7–8 months (Figure 10d). Overall, EQHC 
enhances IOD predictability, although its effectiveness depends on the IOD phase and is limited at lead times of 
5–8 months.

5. Summary and Discussion
This study has examined whether heat content variability intrinsic to the Indian Ocean is effective as an IOD 
predictor by constructing statistical IOD hindcast models with and without including the heat content effect. 
Overall, EQHC is useful in providing IOD predictability independent of ENSO and IOD persistence. Hind-
casts with the EQHC variations included are significantly improved relative to a benchmark hindcast model that 
considers only IOD persistence and ENSO as predictors, especially at lead times of around 5–8 months. These 
results are consistent with recharge oscillator dynamics as described in McPhaden and Nagura  (2014), influ-
encing the development of IOD events through heat content variations along the equator on interannual times 
scales. SEHC, another recently proposed heat content predictor that captures the dynamics of air-sea interaction 
in the eastern pole of the dipole, proves to be less effective when the model framework includes IOD persistence 

Figure 7. Cross-validated anomaly correlation coefficient (ACC) skill scores for Dipole Mode Index hindcasts using (a) 
the benchmark model, (b) equatorial heat content (EQHC)-included model, and (c) southeastern tropical Indian Ocean 
heat content (SEHC)-included model as a function of different target months and lead times. Skill differences using (d) the 
EQHC-included model and (e) SEHC-included model relative to the benchmark model. Crosses indicate significance of the 
ACCs or ACC differences at the 90% confidence level.
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Figure 8. Similar to Figure 7, but for root mean square error (in °C).

Figure 9. (a) Time series of the September-October-November Dipole Mode Index (DMI) (gray bar) and its hindcasts using 
the benchmark model (blue line) and equatorial heat content (EQHC)-included model (red line) at a lead time of 5 months. 
The dashed lines indicate 𝐴𝐴 ± 1.0 standard deviations of the DMI (𝐴𝐴 ± 0.41 °C). (b) Hindcast improvement for Indian Ocean 
Dipole years of the EQHC-included model relative to the benchmark (gray bar). Blue and red lines indicate the Niño3.4 and 
EQHC indices in April-May-June, respectively.
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because the latter essentially accounts for SEHC-associated IOD predictability. Moreover, the effectiveness of 
heat content as an IOD predictor is seasonally-dependent, being most effective for hindcasts initiated in late 
boreal winter and spring to provide improved skill at long lead times. Thus, heat content variations internal to the 
Indian Ocean are valuable as an IOD predictor in certain circumstances, even if in general, ENSO is the dominant 
source of IOD predictability.

EQHC is not as effective a predictor for the IOD as heat content in the Pacific is for ENSO, in part because of 
the strong influence ENSO itself has on the Indian Ocean. Nonetheless, it would be valuable to examine the heat 
content-related variations described in this paper in numerical forecast model experiments to more clearly define 
its practical utility. Also, we found that after accounting for the additional predictability that EQHC provides, 
there is still significant room for improvement in IOD forecasts. Thus, other processes not included in this study 
must be important. For example, the extreme 2019 IOD event was difficult to hindcast using just ENSO and 
EQHC precursors (Figure 9). It could be that in this instance, an interhemispheric pressure gradient was the 
primary trigger for the IOD event (Lu & Ren, 2020). Doi et al. (2020) alternatively suggested that central Pacific 
SST was critical for initiating the extreme IOD in 2019, emphasizing the role of ENSO diversity in Indo-Pacific 
interbasin interactions (Zhang et al., 2015). Clarifying the relative contributions of both the internal and remote 
precursors, and establishing a more comprehensive physical-based framework for IOD predictability, are neces-
sary for understanding and improving IOD prediction.

Data Availability Statement
The authors acknowledge the FAIR data policy. ECMWF ORAS5 data are provided by ECMWF upon approval 
at the website https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-oras5.

Figure 10. Cross-validated anomaly correlation coefficient (ACC) skill scores of the benchmark hindcast (blue), equatorial 
heat content (EQHC)-included hindcast (red), and persistence (orange) for September-October-November Dipole Mode Index 
in (a) positive-Indian Ocean Dipole (IOD) years, (b) negative-IOD years, (c) non-El Niño-Southern Oscillation (ENSO) 
years, and (d) ENSO years. Circles indicate that EQHC-included hindcast is significantly improved than the benchmark at the 
90% confidence level, and the horizontal dashed line indicates the significance of ACC at the 90% confidence level.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-oras5
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